Адронный коллайдер: запуск. Большой адронный коллайдер зачем нужен и где находится? Открытия, сделанные в большом адронном коллайдере Зачем нужен ускоритель частиц

Где находится большой адронный коллайдер?

В 2008 году CERN (Европейский совет ядерных исследований) завершил строительство сверхмощного ускорителя частиц, названного Большой адронный коллайдер. По-английски: LHC – Large Hadron Collider. CERN – международная межправительственная научная организация, образованная в 1955 году. По сути, это главная лаборатория мира в областях высоких энергий, физики частиц и солнечной энергетики . Членами организации являются порядка 20 стран.

Зачем нужен большой адронный коллайдер?

В окрестностях Женевы в 27-километровом (26 659 м) круговом бетонном тоннеле создано кольцо сверхпроводящих магнитов для разгона протонов. Предполагается, что ускоритель поможет не только проникнуть в тайны микроструктуры материи, но и позволит продвинуться в поисках ответа на вопрос о новых источниках энергии в глубине материи.

С этой целью одновременно со строительством самого ускорителя (стоимостью свыше 2 млрд долларов) созданы четыре детектора частиц. Из них два больших универсальных (CMS и ATLAS) и два – более специализированных. Общая стоимость детекторов приближается также к 2 млрд долларов. В каждом из больших проектов CMS и ATLAS приняли участие свыше 150 институтов из 50 стран, в том числе российских и белорусских.

Охота за неуловимым бозоном Хиггса

Как работает адронный коллайдер ускоритель? Коллайдер – это крупнейший ускоритель протонов, работающий на встречных пучках. В результате ускорения каждый из пучков будет иметь энергию в лабораторной системе 7 тераэлектрон-вольт (ТэВ), то есть 7x1012 электрон-вольт. При столкновении протонов образуется множество новых частиц, которые будут регистрироваться детекторами. После анализа вторичных частиц полученные данные помогут ответить на фундаментальные вопросы, волнующие ученых, занимающихся физикой микромира и астрофизикой. В числе главных вопросов – экспериментальное обнаружение бозона Хиггса.

Ставший «знаменитым» бозон Хиггса – гипотетическая частица, являющаяся одним из главных компонентов так называемой стандартной, классической модели элементарных частиц. Назван по имени британского теоретика Питера Хиггса, предсказавшего его существование в 1964 году. Считается, что хиггсовские бозоны, будучи квантами поля Хиггса, имеют отношение к фундаментальным вопросам физики. В частности – к концепции происхождения масс элементарных частиц.

2-4 июля 2012 ряд экспериментов на коллайдере выявили некую частицу, которую можно соотнести с бозоном Хиггса. Причем, данные подтвердились при измерении и системой ATLAS, и системой CMS. До сих пор идут споры, действительно ли открыт пресловутый бозон Хиггса, или это другая частица. Факт в том, что обнаруженный бозон – самый тяжелый из ранее фиксировавшихся. Для решения фундаментального вопроса были приглашены ведущие физики мира: Джеральд Гуральник, Карл Хаген, Франсуа Энглер и сам Питер Хиггс, теоретически обосновавший в далеком 1964 году существование бозона, названного в его честь. После анализа массива данных, участники исследования склонны считать, что бозон Хиггса действительно обнаружен.

Многие физики надеялись, что при исследовании бозона Хиггса выявятся «аномалии», которые заставили бы говорить о так называемой «Новой физике». Однако к концу 2014 года обработан почти весь массив данных, накопленный за три предыдущих года в результате экспериментов на БАК, и интригующих отклонений (за исключением отдельных случаев) не выявлено. На поверку оказалось, что двухфотонный распад пресловутого бозона Хиггса оказался, по словам исследователей, «слишком стандартным». Впрочем, намеченные на весну 2015 года эксперименты могут удивить научный мир новыми открытиями.

Не бозоном единым

Поиск бозона Хиггса – не самоцель гигантского проекта. Для ученых также важен поиск новых видов частиц, позволяющих судить о едином взаимодействии природы на ранней стадии существования Вселенной. Сейчас ученые различают четыре фундаментальных взаимодействия природы: сильное, электромагнитное, слабое и гравитационное. Теория предполагает, что на начальной стадии Вселенной, возможно, существовало единое взаимодействие. Если новые частицы будут открыты, то подтвердится эта версия.

Физиков также волнует вопрос о загадочном происхождении массы частиц. Почему частицы вообще имеют массу? И почему они имеют такие массы, а не другие? Попутно здесь всегда имеется в виду формула Е =mc ². В любом материальном объекте есть энергия. Вопрос в том, как ее высвободить. Как создать такие технологии, которые позволили бы высвобождать ее из вещества с максимальным коэффициентом полезного действия? На сегодня это основной вопрос энергетики.

Иными словами, проект Большого адронного коллайдера поможет ученым найти ответы на фундаментальные вопросы и расширить знания о микромире и, таким образом, – о происхождении и развитии Вселенной.

Вклад белорусских и российских ученых и инженеров в создание БАК

На этапе строительства европейские партнеры из CERN обратились к группе белорусских ученых, имеющих серьезные наработки в этой области, принять участие в создании детекторов для LHC с самого начала проекта. В свою очередь, белорусские ученые пригласили к сотрудничеству коллег Объединенного института ядерных исследований из наукограда Дубна и других российских институтов. Специалисты единой командой приступили к работе над так называемым детектором CMS – «Компактным мюонным соленоидом». Он состоит из многих сложнейших подсистем, каждая из которых сконструирована так, чтобы выполнялись специфические задачи, при этом совместно они обеспечивают идентификацию и точное измерение энергий и углов вылета всех частиц, рождающихся в момент протонных столкновений в БАК.

Белорусско-российские специалисты также участвовали в создании детектора ATLAS. Это установка высотой 20 м, способная измерить траектории частиц с высокой точностью: до 0,01 мм. Чувствительные датчики внутри детектора содержат около 10 млрд транзисторов. Приоритетная цель эксперимента ATLAS состоит в обнаружении бозона Хиггса, изучении его свойств.

Без преувеличения, наши ученые внесли существенный вклад в создание детекторов CMS и ATLAS. Некоторые важные компоненты были изготовлены на минском Машиностроительном заводе им. Октябрьской революции (МЗОР). В частности – торцевые адронные калориметры для эксперимента CMS. Кроме того, завод произвел весьма сложные элементы магнитной системы детектора ATLAS. Это крупногабаритные изделия, требующие владения специальными технологиями обработки металлов и сверхточной обработки. По оценке техников CERN, заказы были выполнены блестяще.

Нельзя недооценивать и «вклад личностей в историю». Например, инженер кандидат технических наук Роман Стефанович ответственен в проекте CMS за сверхточную механику. В шутку даже говорят, что без него CMS не был бы собран. Но если серьезно, то можно вполне определенно утверждать: без него сроки сборки и наладки при требуемом качестве не были бы выдержаны. Другой наш инженер-электронщик Владимир Чеховский, пройдя достаточно сложный конкурс, сегодня отлаживает электронику детектора CMS и его мюонных камер.

Наши ученые участвуют как в запуске детекторов, так и в лабораторной части, в их эксплуатации, поддержании и обновлении. Ученые из Дубны и их белорусские коллеги полноправно занимают свои места в международном физическом сообществе CERN, которое трудится ради получения новой информации о глубинных свойствах и строении материи.

Определение большого адронного коллайдера звучит так: БАК является ускорителем заряженных частиц, и создан он с целью разгона тяжелых ионов и протонов свинца, и исследования тех процессов, которые происходят при их столкновении. Но зачем это нужно? Таит ли в себе это какую-то опасность? В этой статье мы и будем отвечать на эти вопросы, и попробуем понять, зачем нужен большой адронный коллайдер.

Что собой представляет БАК

Большой адронный коллайдер – это огромнейший тоннель кольцеобразной формы. Он похож на большую трубу, которая разгоняет частицы. Находится БАК под территорией Швейцарии и Франции, на глубине 100 метров. Ученые всего мира принимали участие в его создании.

Цель его постройки:

  • Найти бозон Хиггса. Это механизм, который наделяет частицы массой.
  • Изучение кварков – это фундаментальные частицы, которые входят в состав адронов. Поэтому и название коллайдера «адронный».

Многие думают, что БАК является единственным ускорителем в мире. Но это далеко не так. Начиная с 50-х годов 20 века в мире построен не один десяток подобных коллайдеров. Но большой адронный коллайдер считается самым масштабным сооружением, длина его составляет 25,5 км. Кроме этого, в него входит еще один ускоритель, меньший по размеру.

СМИ о БАК

В СМИ, еще с начала создания коллайдера, появилось огромное количество статей об опасности и дороговизне ускорителя. Основная масса людей считает, что деньги потрачены зря, они не могут понять, зачем тратить столько средств и сил на поиски какой-то частицы.

  • Большой адронный коллайдер не является самым дорогим научным проектом в истории.
  • Основная цель этой работы - бозон Хиггса, для открытия которого и созданадронный коллайдер. Результаты этого открытия принесут человечеству множество революционных технологий. Ведь изобретение сотового телефона тоже когда-то было встречено негативно.

Принцип работы БАК

Рассмотрим, как выглядит работа адронного коллайдера. Он на больших скоростях сталкивает пучки частиц, а затем следит за их последующим взаимодействием и поведением. Как правило, на вспомогательном кольце сначала разгоняется один пучок частиц, а уже после этого он отправляется в кольцо основное.

Внутри коллайдера частицы удерживают множество сильнейших магнитов. Так как столкновение частиц происходит за доли секунды, то их перемещение фиксируют высокоточные приборы.

Организацией, которая осуществляет работу коллайдера, является ЦЕРН. Именно она, 4 июля 2012 года, после огромных денежных вложений и трудов, официально объявила о том, что бозон Хиггса таки найден.

Зачем БАК нужен

Теперь необходимо понять, что же дает БАК обычным людям, зачем адронный коллайдер нужен.

Открытия, связанные с бозоном Хиггса и изучение кварков, могут привести в перспективе к новой волне научно-технического прогресса.

  • Грубо говоря, масса является энергией в состоянии покоя, а значит, в будущем есть возможность преобразовать материю в энергию. И, следовательно, не будет проблем с энергией и появится возможность межзвездных путешествий.
  • В будущем изучение квантовой гравитации позволит управлять гравитацией.
  • Это дает возможность подробнее изучить М-теорию, которая утверждает, что в мироздание входит 11 измерений. Это изучение позволит глубже понять строение Вселенной.

О надуманной опасности адронного коллайдера

Как правило, люди боятся всего нового. Опасения у них вызывает и адронный коллайдер. Опасность же его надумана и разжигается в СМИ людьми, не имеющими естественно-научного образования.

  • В БАК сталкиваются адроны, а не бозоны, как пишут некоторые журналисты, пугая людей.
  • Подобные приборы работают уже много десятилетий и приносят не вред, а пользу науке.
  • Предположение о столкновении протонов с высокими энергиями, в результате которых могут возникнуть черные дыры, опровергается квантовой теорией гравитации.
  • В черную дыру может коллапсировать только звезда в 3 раза тяжелее солнца. Так как в солнечной системе таких масс нет, то и черной дыре неоткуда возникнуть.
  • Из-за той глубины, на которой находится коллайдер под землей, его излучение не представляет опасности.

Мы узнали, что такое БАК и для чего нужен адронный коллайдер и поняли, что опасаться его не стоит, а лучше ждать открытий, которые сулят нам большой технический прогресс.

Большой адронный коллайдер называют либо «машиной Судного дня», либо ключом к тайне Вселенной, но его значимость не подвергается сомнению.

Как сказал когда-то знаменитый британский мыслитель Бертран Рассел: « – это то, что вы знаете, философия – то, чего не знаете». Казалось бы, что истинно научное знание давно отделилось от своих истоков, которые можно найти в философских изысканиях Древней Греции, но это не совсем так.

На протяжении двадцатого века ученые пытались найти в науке ответ на вопрос об устройстве мира. Этот процесс был похож на поиск смысла жизни: огромное множество теорий, предположений и даже безумный идей. К каким же выводам пришли ученые к началу XXI века?

Весь мир состоит из элементарных частиц , которые представляют собой конечные формы всего сущего, то есть то, что нельзя расщепить на более мелкие элементы. К ним относятся протоны, электроны, нейтроны и так далее. Эти частицы находятся между собой в постоянном взаимодействии. На момент начала нашего столетия оно выражалось в 4 фундаментальных типах: гравитационное, электромагнитное, сильное и слабое. Первое описывается Общей теорией относительности, другие три объединяются в рамках Стандартной модели (квантовая теория). Было также сделано предположение о существовании еще одного взаимодействия, впоследствии названного «поле Хиггса».

Постепенно стала формироваться идея объединения всех фундаментальных взаимодействий в рамках «теории всего» , которая изначально воспринималась как шутка, но быстро переросла в мощное научное направление. Зачем это нужно? Всё просто! Без понимания того, как функционирует мир, мы словно муравьи в искусственном гнезде – не выберемся за пределы своих возможностей. Человеческое знание не может (ну, или пока не может, если вы оптимист) охватить устройство мира целиком.

Одной из самых знаменитых теорий, претендующих на «объятие всего», считается теория струн . Она подразумевает, что вся Вселенная и наша с вами жизнь многомерна. Несмотря на разработанную теоретическую часть и поддержку знаменитых физиков, таких, как Брайан Грин и Стивен Хокинг, она не имеет экспериментального подтверждения.

Ученые, спустя десятилетия, устали вещать с трибун и решили построить то, что раз и навсегда должно расставить все точки над «i». Для этого и была создана крупнейшая в мире экспериментальная установка – Большой адронный коллайдер (БАК).

«К коллайдеру!»

Что такое коллайдер? Если говорить научным языком, то это – ускоритель заряженных частиц, предназначенный для разгона элементарных частиц для дальнейшего понимания их взаимодействия. Если говорить ненаучным языком – это большая арена (или песочница, если вам угодно), на которой ученые сражаются за подтверждение своих теорий.

Впервые идея столкнуть элементарные частицы и посмотреть, что будет, появилась у американского физика Дональда Вильяма Керста (Donald William Kerst) в 1956 году. Он предположил, что благодаря этому ученым удастся проникнуть в тайны Вселенной. Казалось бы, что плохого в том, чтобы столкнуть между собой два пучка протонов с суммарной энергией в миллион раз больше, чем от термоядерного синтеза? Времена были соответствующие: холодная война, гонка вооружений и все такое.

История создания БАК

Brücke-Osteuropa / wikimedia.org
(CC0 1.0)

Идея создания ускорителя для получения и исследования заряженных частиц появилась еще в начале 1920-х годов, но первые прототипы были созданы только к началу 1930-х. Изначально они представляли собой высоковольтные линейные ускорители, то есть заряженные частицы двигались прямолинейно. Кольцевой вариант был представлен в 1931 году в США, после чего похожие устройства стали появляться в ряде развитых стран – Великобритании, Швейцарии, СССР. Они получили название циклотроны , и стали в дальнейшем активно использоваться для создания ядерного оружия.

Нужно отметить, что стоимость строительства ускорителя частиц неимоверно высокая. Европа, игравшая во время холодной войны не первостепенную роль, поручила его создание Европейской организации по ядерным исследованиям (на русском часто читается как ЦЕРН) , которая в дальнейшем занялась и строительством БАК.

ЦЕРН была создана на волне беспокойства мирового сообщества в отношении ядерных исследований в США и СССР, которые могли привести к всеобщему истреблению. Поэтому ученые решили объединить усилия и направить их в мирное русло. В 1954 году ЦЕРН получила своё официальное рождение.

В 1983 году под эгидой ЦЕРН были открыты бозоны W и Z, после чего вопрос об открытии бозонов Хиггса стал лишь делом времени. В том же году началась работа над строительством Большого электрон-позитронного коллайдера (БЭПК), который сыграл первостепенную роль в изучении обнаруженных бозонов. Однако уже тогда стало ясно, что мощности созданного устройства в скором времени окажутся недостаточными. И в 1984 году было принято решение о строительстве БАК, сразу после того, как БЭПК будет демонтирован. Это и произошло в 2000 году.

Строительство БАК, начавшееся в 2001 году, облегчалось тем, что оно происходило на месте бывшего БЭПК, в долине Женевского озера. В связи с вопросами финансирования (в 1995 году стоимость оценивалась в 2,6 млрд швейцарских франков, к 2001 превысила 4,6 млрд, в 2009 составила 6 млрд долларов).

На данный момент БАК располагается в туннеле с длиной окружности 26,7 км и проходит через территории сразу двух европейских стран – Франции и Швейцарии. Глубина туннеля варьируется от 50 до 175 метров. Нужно также отметить, что энергия столкновения протонов в ускорителе достигает 14 тераэлектронвольт, что в 20 раз больше достигнутых результатов при использовании БЭПК.

«Любопытство – не порок, но большое свинство»

27-километровый туннель коллайдера ЦЕРН, расположен в 100 метрах под землей недалеко от Женевы. Здесь будут находиться огромные сверхпроводящие электромагниты. Справа транспортные вагоны. Juhanson / wikipedia.org (CC BY-SA 3.0)

Зачем нужна эта рукотворная «машина Судного дня»? Ученые рассчитывают увидеть мир таким, каким он был сразу после Большого взрыва, то есть в момент образования материи.

Цели , которые поставили перед собой ученые при строительстве БАК:

  1. Подтверждение или опровержение Стандартной модели с целью дальнейшего создания «теории всего».
  2. Доказательство существования бозона Хиггса как частицы пятого фундаментального взаимодействия. Она, согласно теоретическим изысканиям, должна влиять на электрическое и слабое взаимодействие, нарушая их симметрию.
  3. Изучение кварков, представляющих собой фундаментальную частицу, которая в 20 тысяч раз меньше состоящих из них протонов.
  4. Получение и исследование темной материи, составляющей большую часть Вселенной.

Это далеко не единственные цели, возложенные учеными на БАК, но остальные больше относятся к смежным или сугубо теоретическим.

Чего удалось достичь?

Несомненно, наиболее крупным и значимым достижением стало официальное подтверждение существования бозона Хиггса . Открытие пятого взаимодействия (поля Хиггса), которое, по утверждениям ученых, влияет на приобретение массы всеми элементарными частицами. Считается, что при нарушении симметрии в процессе воздействия поля Хиггса на другие поля, бозоны W и Z становятся массивными. Открытие бозона Хиггса настолько велико по своей значимости, что ряд ученых дал им название «божественные частицы».

Кварки объединяются в частицы (протоны, нейтроны и другие), которые получили название адроны . Именно они ускоряются и сталкиваются в БАК, откуда и пошло его название. В процессе работы коллайдера было доказано, что выделить кварк из адрона попросту невозможно. Если вы попытаетесь это сделать, то просто вырвете из, например, протона другой вид элементарной частницы – мезон . Несмотря на то что это лишь один из адронов и ничего нового в себе не несет, дальнейшее изучение взаимодействия кварков должно осуществляться именно небольшими шагами. В исследованиях фундаментальных законов функционирования Вселенной спешка опасна.

Хоть сами кварки и не были открыты в процессе использования БАК, но их существование до определенного момента воспринималось как математическая абстракция. Первые такие частицы были найдены в 1968 году, но лишь в 1995-ом официально доказано существование «истинного кварка». Результаты экспериментов подтверждаются возможностью их воспроизвести. Поэтому достижение БАК аналогичного результата воспринимается не как повтор, а как закрепляющее доказательство их существования! Хотя проблема с реальностью кварков никуда и не исчезла, ведь их просто нельзя выделить из адронов.

Какие планы?

Hans G / flickr.com (CC BY-SA 2.0)

Основная задача по созданию «теории всего» решена не была, но теоретическая проработка возможных вариантов её проявления ведется. До сих пор одной из проблем объединения Общей теории относительности и Стандартной модели остается разная область их действия, в связи с чем вторая не учитывает особенности первой. Поэтому важен выход за пределы Стандартной модели и достижения грани Новой физики .

Суперсимметрия – ученые считают, что она связывает бозонное и фермионное квантовые поля, да так, что они могут превращаться друг в друга. Именно подобная конверсия выходит за рамки Стандартной модели, так как существует теория, что в основе симметричного отображения квантовых полей лежат гравитоны . Они, соответственно, могут являться элементарной частицей гравитации.

Бозон Мадала – гипотеза о существовании бозона Мадала предполагает, что имеется еще одно поле. Только если бозон Хиггса взаимодействует с известными частицами и материей, то бозон Мадала – с темной материей . Несмотря на то что она занимает большую часть Вселенной, её существование не входит в рамки Стандартной модели.

Микроскопическая черная дыра – одно из исследований БАК заключается в создании черной дыры. Да-да, именно той черной, всепоглощающей области в космическом пространстве. Благо, что значительных достижений в этом направлении сделано не было.

На сегодняшний день Большой адронный коллайдер представляет собой многоцелевой исследовательский центр, на основе работы которого создаются и экспериментально подтверждаются теории, которые помогут нам лучше понять устройство мира. Вокруг ряда проводимых исследований, которые клеймятся опасными, нередко поднимаются волны критики, в том числе со стороны Стивена Хокинга, но игра определенно стоит свеч. Мы не сможем плыть в черном океане под названием Вселенная с капитаном, у которого ни карты, ни компаса, ни элементарных знаний об окружающем мире.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Дата публикации: 17.09.2012

Что такое Большой Адронный Коллайдер? Зачем он нужен? Может ли он стать причиной конца света? Давайте разложим всё «по полочкам».

Что такое БАК?

Это огромный кольцеобразный тоннель, похожий на трубу для разгона частиц. Находится он на глубине около 100 метров под территорией Франции и Швейцарии. В его постройке участвовали учёные со всего мира.

БАК был построен для того, чтобы найти бозон Хиггса - механизм, наделяющий частицы массой. Второстепенной целью также является изучение кварков - фундаментальных частиц, из которых состоят адроны (отсюда и название «адронный» коллайдер).

Многие наивно полагают, что БАК - это единственный ускоритель частиц в мире. Однако по всему миру, начиная с 50х годов, был построен не один десяток коллайдеров. БАК считается самым большим - его длина 25,5 км. К тому же в его структуру входит ещё один, меньший по диаметру, ускоритель.

БАК и СМИ

С момента начала постройки, появилось множество статей о дороговизне и опасности ускорителя. Большинство людей считают, что деньги были потрачены зря, и не понимают, зачем нужно было тратить столько денег и сил для того, чтобы найти какую-то частицу.

Во-первых, БАК - это не самый дорогой научный проект в истории. На юге Франции находится научный центр Кадараш с дорогим термоядерным реактором. Кадараш был построен при поддержке 6 стран (в том числе и России); на данный момент в него уже вложено порядка 20 миллиардов долларов. Во-вторых, открытие бозона Хиггса принесёт миру множество революционных технологий. К тому же, когда изобрели первый сотовый телефон, люди тоже встретили его изобретение негативно…

Как работает БАК?

БАК сталкивает на больших скоростях пучки частиц и следит за последующим их поведением и взаимодействием. Как правило, один пучок частиц разгоняется сначала на вспомогательном кольце, а потом уже отправляется в основное кольцо.

Множество сильнейших магнитов удерживают частицы внутри коллайдера. А высокоточные приборы фиксируют перемещения частиц, так как столкновение происходит за доли секунды.

Организацией работы коллайдера занимается ЦЕРН (организация по ядерным исследованиям).

В итоге, после огромных трудов и денежных вложений, 4 июля 2012 года ЦЕРН официально объявило о том, что бозон Хиггса найден. Конечно, некоторые свойства бозона, обнаруженные на практике, отличаются от теоретических аспектов, однако сомнений у учёных в «реальности» бозона Хиггса нет.

Зачем нужен БАК?

Чем же полезен БАК для обычных людей? Научные открытия, связанные с открытием бозона Хиггса и изучением кварков, в перспективе могут привести к новой научно-технической революции.

Во-первых, так как масса - это энергия в состоянии покоя (грубо говоря), есть возможность в будущем преобразовывать материю в энергию. Тогда проблем с энергией не будет, а значит, появится возможность путешествовать к далёким планетам. А это шаг к межзвёздным путешествиям…

Во-вторых, изучение квантовой гравитации позволит, в будущем, управлять гравитацией. Однако это случится ещё не скоро, так как гравитоны пока ещё не очень хорошо изучены, а потому устройство, контролирующее гравитацию, может быть непредсказуемым.

В-третьих, есть возможность подробнее понять М-теорию (производная от теории струн). Данная теория утверждает, что мироздание состоит из 11 измерений. М-теория претендует на звание «теории всего», а значит, её изучение позволит нам гораздо лучше понять строение Вселенной. Кто знает, быть может, в будущем человек научится перемещаться и воздействовать на другие измерения.

БАК и Конец Света

Многие люди утверждают, что работа БАК может уничтожить человечество. Как правило, говорят об этом люди, которые плохо разбираются в физике. Запуск БАК много раз откладывался, но 10 сентября 2008 года он, всё же, был запущен. Однако стоит обратить внимание, что БАК ещё ни разу не разгоняли на полную мощь. Учёные планируют запустить БАК на полную мощность в декабре 2014 года. Давайте рассмотрим возможные причины конца света и другие слухи…

1. Создание чёрной дыры

Чёрная дыра, это звезда с огромной гравитацией, которая притягивает не только материю, но и свет, и даже время. Чёрная дыра не может появиться из ниоткуда, а потому учёные из ЦЕРН считают, что шансы появления устойчивой чёрной дыры крайне малы. Однако, это возможно. При столкновении частиц может быть создана микроскопическая чёрная дыра, размеров которой хватит, чтобы уничтожить нашу планету за пару лет (или быстрее). Но бояться человечеству не стоит, так как, благодаря излучению Хокинга, чёрные дыры быстро теряют свою массу и энергию. Хотя и среди учёных есть пессимисты, которые считают, что сильное магнитное поле внутри коллайдера не позволит чёрной дыре распасться. В итоге, шанс, что создастся чёрная дыра, которая уничтожит планету, очень мал, но такая вероятность есть.

2. Образование «тёмной материи»

Она же - «странная материя», страпелька (странная капелька), «странглет». Это материя, которая при столкновении с другой материей, превращают её в подобную себе. Т.е. при столкновении странглета и обычного атома, образуются два странглета, порождая цепную реакцию. Если такая материя появится в коллайдере, то человечество будет уничтожено за считанные минуты. Однако шанс, что это произойдёт, также мал, как и образование чёрной дыры.

3. Антивещество

Версия, связанная с тем, что при работе коллайдера может появиться такое количество антивещества, которое уничтожит планету, выглядит самой бредовой. И суть даже не в том, что шансы на образование антиматерии очень малы, а в том, что на земле уже есть образцы антиматерии, хранящиеся в специальных ёмкостях, где отсутствует гравитация. На Земле вряд ли появится такое количество антивещества, которое будет способно уничтожить планету.

Выводы

Многие жители России даже не знают, как правильно написать фразу «большой адронный коллайдер», чего уж говорить об их знании его предназначения. А некоторые псевдопророки утверждают, что во Вселенной нет разумных цивилизацией потому, что каждая цивилизация, достигнув научного прогресса, создаёт коллайдер. Тогда образуется чёрная дыра, уничтожающая цивилизацию. Отсюда они объясняют и большое количество массивных чёрных дыр в центре галактик.

Однако есть и такие люди, которые считают, что мы должны побыстрее уже запустить БАК, иначе в момент прилёта инопланетян, они нас захватят, так как посчитают нас дикарями.

В итоге, единственный шанс узнать о том, что принесёт нам БАК - это просто ждать. Рано или поздно мы всё-таки узнаем, что нас ждёт: уничтожение или прогресс.


Последние советы раздела «Наука & Техника»:

Вам помог этот совет? Вы можете помочь проекту, пожертвовав на его развитие любую сумму по своему усмотрению. Например, 20 рублей. Или больше:)

Принцип работы Большого адронного коллайдера

Ускоритель БАК будет работать на основе эффекта сверхпроводимости, т.е. способности определенных материалов проводить электричество без сопротивления или потери энергии, обычно при очень низких температурах. Чтобы удержать пучок частиц на его кольцевом треке, необходимы более сильные магнитные поля, чем те, которые использовались ранее в других ускорителях ЦЕРН.

Большой адронный коллайдер - ускоритель протонов, построенный на территории Швейцарии и Франции, не имеет аналогов в мире. Эта кольцевая конструкция протяженностью 27 км сооружена на 100-метровой глубине.

В ней с помощью 120 мощных электромагнитов при температуре, близкой к абсолютному нулю - минус 271,3 градуса по Цельсию, предполагается разогнать до близкой к световой скорости (99,9 процентов) встречные пучки протонов. Однако в ряде мест их маршруты пересекутся, что позволит протонам сталкиваться. Направлять частицы будут несколько тысяч сверхпроводящих магнитов. Когда энергии будет достаточно, частицы столкнутся, тем самым учёные создадут модель Большого взрыва. Тысячи датчиков будут фиксировать моменты столкновения. Последствия столкновения протонов и станет главным предметом изучения мира. [ http://dipland.ru /Кибернетика/Большой_андронный_коллайдер_92988]

Технические характеристики

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тера электронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109электронвольт) на каждую пару сталкивающихся нуклонов . На начало 2010 года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена - протон-антипротонный коллайдер Тэватрон , который до конца 2011 года работал в Национальной ускорительной лаборатории им. Энрико Ферми (США ). Несмотря на то, что наладка оборудования растягивается на годы и ещё не завершена, БАК уже стал самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC , работающий в Брукхейвенской лаборатории (США).

Детекторы

На БАК работают 4 основных и 3 вспомогательных детектора:

· ALICE (A Large Ion Collider Experiment)

ATLAS (A Toroidal LHC ApparatuS)

CMS (Compact Muon Solenoid)

LHCb (The Large Hadron Collider beauty experiment)

TOTEM (TOTal Elastic and diffractive cross section Measurement)

LHCf (The Large Hadron Collider forward)

MoEDAL (Monopole and Exotics Detector At the LHC).

ATLAS, CMS, ALICE, LHCb - большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf - вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.

Детектор CMS

Детекторы ATLAS и CMS - детекторы общего назначения, предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи , ALICE - для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb - для исследования физики b -кварков , что позволит лучше понять различия между материей и антиматерией , TOTEM - предназначен для изучения рассеяния частиц на малые углы, таких что происходит при близких пролётах без столкновений (так называемые несталкивающиеся частицы, forward particles), что позволяет точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf - для исследования космических лучей , моделируемых с помощью тех же несталкивающихся частиц .

С работой БАК связан также седьмой, совсем незначительный в плане бюджета и сложности, детектор (эксперимент) MoEDAL , предназначенный для поиска медленно движущихся тяжёлых частиц.

Во время работы коллайдера столкновения проводятся одновременно во всех четырёх точках пересечения пучков, независимо от типа ускоряемых частиц (протоны или ядра). При этом все детекторы одновременно набирают статистику.

Потребление энергии

Во время работы коллайдера расчётное потребление энергии составит 180 М Вт . Предположительные энергозатраты всего ЦЕРН на 2009 год с учётом работающего коллайдера - 1000 ГВт·ч, из которых 700 ГВт·ч придётся на долю ускорителя. Эти энергозатраты - около 10 % от суммарного годового энергопотребления кантона Женева . Сам ЦЕРН не производит энергию, имея лишь резервные дизельные генераторы .[ http://ru.wikipedia.org/wiki/ ]

Возможно, через какие-то несколько лет интернет уступит место новой, более глубокой интеграции удаленных компьютеров, позволяющей не только удаленно передавать информацию, локализованную в разных концах света, но и автоматически использовать удаленные вычислительные ресурсы. В связи с запуском Большого адронного коллайдера CERN уже несколько лет работает над созданием такой сети.

То, что интернет (или то, что обозначается термином web) был изобретен в Европейской организации ядерных исследований (CERN), давно уже стало хрестоматийным фактом. Вокруг таблички «В этих коридорах была создана всемирная сеть» в одном из обычных коридоров обычного здания CERN во время дня открытых дверей всегда толпятся зеваки. Сейчас интернет используют для своих практических нужд люди по всему миру, а изначально он был создан для того, чтобы ученые, работающие на одном проекте, но находящиеся в разных концах планеты, могли общаться между собой, делиться данными, публиковать информацию, к которой можно было бы получить доступ удаленно.

Разрабатываемая в CERN система GRID (по-английски grid - решётка, сеть ) - это еще один шаг вперед, новая ступень интеграции пользователей компьютеров.

Он дает не только возможность публиковать данные, которые находятся где-то в другой точке планеты, но и использовать удаленные машинные ресурсы, не сходя со своего места.

Конечно, обычные компьютеры не играют особой роли в обеспечении вычислительных мощностей, поэтому первый этап интеграции - это соединение мировых суперкомпьютерных центров.

Создание этой системы спровоцировал Большой адронный коллайдер. Хотя уже сейчас GRID используется для массы других задач, без коллайдера его бы не было, и наоборот, без GRID обработка результатов коллайдера невозможна.

Карта серверов GRID //

Люди, которые работают в коллаборациях БАК, находятся в разных концах планеты. Известно, что над этим прибором работают не только европейцы, а и все 20 стран - официальных участниц CERN, всего же порядка 35 стран. Теоретически для обеспечения работы БАК существовала альтернатива GRID - расширение собственных вычислительных ресурсов компьютерного центра CERN. Но тех ресурсов, что были на момент постановки задачи, было совершенно недостаточно для моделирования работы ускорителя, хранения информации его экспериментов и ее научной обработки. Поэтому компьютерный центр нужно было бы очень значительно перестраивать и модернизировать, закупать больше компьютеров и средств для хранения данных. Но это бы означало, что все финансирование будет сосредоточено в CERN. Это было не очень приемлемо для стран, находящихся далеко от CERN. Конечно, они не были заинтересованы в спонсировании ресурсов, которыми очень сложно будет воспользоваться и скорее склонны были наращивать свой вычислительный, машинный потенциал. Поэтому родилась идея использовать ресурсы там, где они находятся.

Не пытаться все сосредоточить в одном месте, а объединить то, что уже есть в разных уголках планеты.