Принцип работы понижающего трансформатора 220 12. Бестрансформаторное электропитание.Конденсатор вместо резистора. Блок питания на сетевом трансформаторе

Традиционное напряжение в электросети квартиры либо дома составляет 220 вольт. Под это значение адаптировано большинство бытовых приборов. Однако иногда возникает необходимость снижения параметра до отметки 12 вольт для безопасной работы различных устройств. Чтобы обеспечить этот процесс, советуем купить понижающий трансформатор 220 на 12 вольт.

Схема устройства

Аппаратура такого типа имеет особую конструкцию, обеспечивающую безопасное изменение напряжения в сети:

  • каркасный корпус для монтажа или обмоток;
  • изоляция;
  • выводы контактов для высокого и низкого напряжения;
  • обмотки с помощью медных или алюминиевых проводов;
  • магнитопровод, который изготавливается из тонкой стали электротехнического назначения.

Механизм работы

Трансформаторы для понижения напряжения с 220 на 12 вольт предназначены для последовательного прохождения напряжения, поступающего из внешнего источника, через все элементы устройства. Переменный магнитный поток формирует электродвижущую силу в каждой обмотке за счет электромагнитной индукции. Энергия первичной обмотки отдается вторичной, а магнитная индукция обеспечивает преобразование в необходимое напряжение.

Особенности эксплуатации

Необходимо соблюдать особые условия для нормального функционирования трансформатора:

  • отсутствие тряски, ударов и вибрации;
  • химически безопасная среда;
  • температура воздуха в диапазоне от -45 до +40 о С.

Как выбрать?

Компания «Стабильная Энергия» предлагает сухие трансформаторы 220/12 В. Они обеспечены системой естественного воздушного охлаждения, надежны и экологичны, при этом устойчивы к перепадам температуры и доступны по цене. Интернет-магазин предлагает различные однофазные, сухие, защищенные, многоцелевого назначения или разделительные модели лучших производителей, соответствующие ГОСТ. Мы занимаемся оптовыми и розничными продажами, есть возможность предварительного заказа с адресной доставкой.

В частном доме или же в квартире большая часть электрических приборов имеет напряжение питания 220 Вольт, соответственно и электрическая сеть также имеет 220В. Но бывают случаи, когда нужно понизить напряжение до безопасных 12В для подключения светодиодных лент/ламп, галогенных ламп и других устройств, работающих от переменного тока.

Трансформатор – статичное электромагнитное устройство для преобразования переменного тока напряжения U 1 в переменный ток напряжения U 2 , той же частоты.

Основными элементами конструкции являются:

  1. Магнитопровод, собранный из тонких листов электротехнической стали;
  2. Обмотки, выполненные медными или алюминиевыми проводами;
  3. Каркас для обмоток;
  4. Изоляция;
  5. Контактные вывода высокого и низкого напряжения (ВН и НН);
  6. Каркас для монтажа.

На сегодняшний день обширно используют понижающие трансформаторы электронного типа, выполненные на основе полупроводников, работу которых дополняет интегральная схема. Они обладают конкретным превосходством в виде небольших размеров, большего КПД, незначительного веса, отсутствия нагрева и шума, способности регулировать ток и защиты от токов короткого замыкания. Однако классические продолжают активно использоваться из-за надежности и простоты конструкции.

На так называемую первичную обмотку, подается напряжение от внешнего источника. Переменный ток, протекая по ней, создает переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции переменный магнитный поток в магнитопроводе создает во всех обмотках, в том числе и первичной, электродвижущую силу. При подсоединении нагрузки на вторичную обмотку, магнитная индукция создает в витках вторичной обмотки напряжение, а от первичной обмотки будет поступать энергия, отдаваемая в цепь вторичной.

Как выбрать понижающий трансформатор

В первую очередь необходимо смотреть на его мощность и исполнение. Мощность обязана быть с запасом, то есть больше суммарной потребляемой мощности подключаемых светильников.

Чтобы определить суммарную мощность, достаточно сложить все мощности ламп и/или иных приборов, которые планируется подключить. К полученному результату накиньте еще 20% для запаса.

Пример. Допустим, имеется 5 лампочек мощностью по 10Вт и 5 лампочек по 15Вт. Суммарная мощность все сети освещения будет 125Вт, прибавим еще 20% и получим 150Вт. Таким образом, нам необходимо купить понижающий трансформатор 220/12В мощностью не менее 150Вт. Посещаем магазин, находим наиболее близкую мощность более 150 и покупаем.

При его монтаже на улице, потребуется устройство пылевлагозащищенного исполнения (лучше в корпусе из нержавеющей стали). Между тем, при большом расстоянии до светильников необходимо располагать трансформатор на улице. Это связано с падением напряжения на кабеле большей длинны.

Протяженность кабельной линии от источника до ламп обязана быть не более 3-5 метра. В случае если это расстояние увеличить, то в кабеле появятся большие потери (провод начнет греться).

Для количественной оценки падения напряжения в кабеле можно воспользоваться простой формулой:

W – суммарная мощность всех потребителей, подключенная к данному проводу, Вт;

V – напряжение источника тока, как правило, 12В или 24В;

L – длина провода, м;

S – площадь сечения провода, мм²;

ρ – значение удельного электрического сопротивление, для меди это примерно 0,018 Ом·мм²/м, для алюминия – 0,0295 Ом·мм²/м;

Для количественной оценки падения мощности на проводах можно воспользоваться следующей формулой:

Если эта мощность получится слишком большой, то, единственное верное решение для уменьшения потерь – это увеличить сечение проводника, иначе останется только гадать, что случится раньше – возгорание проводов или выход из строя светильников.

Но в том случае, когда удаленность потребителей до источника питания небольшое, трансформатор целесообразнее поставить в помещении, в непосредственной близости от источника питания 220 В – например, около щитка или в щите (на сегодняшний день производители изготавливают понижающие трансформаторы с креплением на DIN-рейку).

Понижающие трансформаторы на дин рейку легко устанавливаются в распределительные щиты и при этом в зависимости от модели занимают места всего от 2 до 6 модулей. Первичная обмотка у них электрически отделена от вторичной, что обеспечивает дополнительную защиту для людей. Имеется защита от перегрузок, выполненная на тепловое реле.

Наиболее замечательный и популярный пример, для наглядной схемы подключения - это подключение экономной системы освещения. Она необходима для реализации схемы освещения с меньшими показателями напряжения, чем классические 220 В. Чаще всего используются 12-вольтные галогенные лампы, которые применяют как в открытых, так и во встроенных светильниках.

Общая схема подключения со светильниками достаточно легка в исполнении и изображена на рисунке.

Понижающий трансформатор подключается через выключатель. Далее к нему параллельно подключаются светильники, при этом его роль заключается в снижении напряжения со стандартных 220 Вольт до 12 Вольт, требуемых для питания точечных галогеновых светильников.

Понижающий трансформатор с 220 на 12 вольт купить

На сегодняшний день в продаже имеются устройства различного исполнения и конструкции. Заказать или купить Вы можете как в розничных магазинах, так и в интернет магазинах. В последних, кстати, более выгодные цены.

Ниже Мы предлагаем Вам ознакомиться и сравнить несколько вариантов:

Модель ОСЗ- 1,0 ОСОВ-0,25 ТП1-0,25 ОСВМ-0,25 ЯТП-0,25
Ориентировочная цена, руб от 6500 от 2200 от 5300 от 5300 от 1500
Внешний вид
Мощность, кВА 1 0.25 0.25 0.25 0.25
Первичное напряжение, В 220 220 220 220 220
Вторичное напряжение, В 12, 24, 36,
42
12, 24, 36,
42, 110, 127
12, 24,
36, 42, 110
12, 24, 36,
42, 110, 127
12
Степень защиты IP20 IP65 IP20 IP55 IP31
Климатическое исполнение У2 У5 У2 ОМ5 УХЛ 4
Габариты, мм Д - 275
Ш - 155
В - 270
Д - 200
Ш - 200
В - 225
Д - 320
Ш - 160
В - 302
Д - 200
Ш - 200
В - 225
Д - 210
Ш - 145
В - 145
Вес, кг 16 5.9 13 5.9 6.5

Как видите, отличительной особенностью всех трансформаторов является конструктивное исполнение. Для наружной установки Мы рекомендуем выбрать типа ОСОВ или ОСВМ , так как они имеют водозащищенное исполнение.

В данной статье поговорим про бестрансформаторное электропитание.

В радиолюбительской практике, да и в промышленной аппаратуре источником электрического тока обычно являются гальванические элементы, аккумуляторы, или промышленная сеть 220 вольт. Если радиоприбор переносной (мобильный), то использование батарей питания себя оправдывает такой необходимостью. Но если радиоприбор используется стационарно, имеет большой ток потребления, эксплуатируется в условиях наличия бытовой электрической сети, то питание его от батарей практически и экономически не выгодно. Для питания различных устройств низковольтным напряжением от бытовой сети 220 вольт существуют различные виды и типы преобразователей напряжения бытовой сети 220 вольт в пониженное. Как правило, это схемы трансформаторного преобразования.

Схемы трансформаторного питания строятся по двум вариантам

1. «Трансформатор – выпрямитель — стабилизатор» — классическая схема питания, обладающая простотой построения, но большими габаритными размерами;

2. «Выпрямитель — импульсный генератор – трансформатор – выпрямитель – стабилизатор» — схема импульсного источника питания, обладающая малыми габаритными размерами, но имеющая более сложную схему построения.

Самое главное достоинство указанных схем питания – наличие гальванической развязки первичной и вторичной цепи питания. Это снижает опасность поражения человека электрическим током, и предотвращает выход аппаратуры из строя по причине возможного замыкания токоведущих частей устройства на «ноль». Но иногда, возникает потребность в простой, малогабаритной схеме питания, в которой наличие гальванической развязки не важно. И тогда мы можем собрать простую конденсаторную схему питания . Принцип её работы заключается в «поглощении лишнего напряжения» на конденсаторе. Для того, чтобы разобраться в том, как это поглощение происходит, рассмотрим работу простейшего делителя напряжения на резисторах .

Делитель напряжения состоит из двух резисторов R1 и R2 . Резистор R1 – ограничительный, или по другому называется добавочный. Резистор R2 – нагрузочный (), он же является внутренним сопротивлением нагрузки.

Предположим, что нам необходимо из напряжения 220 вольт получить напряжение 12 вольт. Указанные U2 = 12 вольт должны падать на сопротивлении нагрузки R2 . Это означает, что остальное напряжение U1 = 220 – 12 = 208 вольт должно падать на сопротивлении R1 .

Допустим, что в качестве сопротивления нагрузки мы используем обмотку электромагнитного реле, а активное сопротивление обмотки реле R2 = 80 Ом . Тогда по закону Ома, ток, протекающий через обмотку реле, будет равен: Iцепи = U2/R2 = 12/80 = 0,15 ампер . Указанный ток должен течь и через резистор R1 . Зная, что на этом резисторе должно падать напряжение U1 = 208 вольт , по закону Ома определяем его сопротивление:

R1 = UR1 / Iцепи = 208/0,15 = 1 387 Ом .

Определим мощность резистора R1: Р = UR1 * Iцепи = 208 * 0,15 = 31,2 Вт .

Для того, чтобы этот резистор не грелся от рассеиваемой на нём мощности, реальное значение его мощности необходимо увеличить в раза два, это приблизительно составит 60 Вт . Размеры такого резистора довольно внушительны. И вот здесь нам пригодится конденсатор!

Мы знаем, что любой конденсатор в цепи переменного тока обладает таким параметром, как «реактивное сопротивление» — сопротивление радиоэлемента изменяющееся в зависимости от частоты переменного тока. Реактивное сопротивление конденсатора определяется по формуле:

где п – число ПИ = 3,14, f – частота (Гц), С – ёмкость конденсатора (фарад).

Заменив резистор R1 на бумажный конденсатор С , мы «забудем» что такое резистор внушительных размеров.

Реактивное сопротивление конденсатора С должно приблизительно равняться ранее рассчитанному значению R1 = Хс = 1 387 Ом .

Преобразовав формулу заменив местами величины С и Хс , мы определим значение ёмкости конденсатора:


С1 = 1 / (2*3,14*50*1387) = 2,3*10 -6 Ф = 2,3 мкФ

Это может быть несколько конденсаторов с требуемой общей ёмкостью, включенных параллельно, или последовательно.

Схема бестрансформаторного (конденсаторного) питания будет выглядеть следующим образом:

Но изображённая схема работать будет, но не так как мы планировали! Заменив массивный резистор R1 на один, или два малогабаритных конденсатора, мы выиграли в размерах, но не учли одно — конденсатор должен работать в цепи переменного тока, а обмотка реле – в цепи постоянного тока. На выходе нашего делителя переменное напряжение, и его необходимо преобразовать в постоянное. Это достигается вводом в схему диодного выпрямителя разделяющего входную и выходную цепь, а так же элементов сглаживающих пульсацию переменного напряжения в выходной цепи.

Окончательно, схема бестрансформаторного (конденсаторного) питания будет выглядеть следующим образом:

Конденсатор С2 — сглаживающий пульсации. Для исключения опасности поражения электрическим током от накопленного напряжения в конденсаторе С1 , в схему введен резистор R1 , который шунтирует конденсатор своим сопротивлением. При работе схемы он своим большим сопротивлением не мешает, а после отключения схемы от сети, в течение времени, определяемого секундами, через резистор R1 происходит разряд конденсатора. Время разряда определяется обыкновенной формулой:

Для того, чтобы следующий раз не делать все вышеперечисленные расчёты, выведем окончательную формулу расчёта ёмкости конденсатора схемы бестрансформаторного (конденсаторного) питания. При известных значениях входного и выходного напряжения, а также сопротивления R2 (оно же — сопротивление нагрузки ), значение сопротивления R1 находится в соответствии с пунктом 3 статьи «Делитель напряжения «:

Объединив две формулы, находим конечную формулу расчета ёмкости конденсатора схемы бестрансформаторного питания:

где Р1 .

Учитывая, что при работе в переменном напряжении в конденсаторе происходят перезарядные процессы, а также сдвиг фазы тока по отношению к фазе напряжения, необходимо брать конденсатор на напряжение в 1,5…2 раза больше того напряжения, которое подаётся в цепь питания. При сети 220 вольт, конденсатор должен быть рассчитан на рабочее напряжение не менее 400 вольт .

По указанной выше формуле можно рассчитать значение ёмкости схемы бестрансформаторного питания для любого устройства, работающего в режиме постоянной нагрузки. Для работы в условиях переменной нагрузки, меняется также ток и напряжение выходной цепи. Для стабилизации выходного напряжения обычно применяют стабилитроны, или эквивалентные транзисторные схемы, ограничивающие выходное напряжение на необходимом уровне. Одна из таких схем показана на рисунке ниже.

Вся схема включена в сеть 220 вольт постоянно, а реле Р1 включается в цепь и выключается с помощью выключателя S1 . В качестве выключателя может быть и полупроводниковый прибор, например транзистор. Транзисторный каскад VT1 включен параллельно нагрузке, он исключает увеличение напряжения во вторичной цепи. Когда нагрузка отключена, ток течёт через транзисторный каскад. Если бы этого каскада не было, то при отключении S1 и отсутствии другой нагрузки, на выводах конденсатора С2 напряжение могло бы достигнуть максимального сетевого – 315 вольт.

Стоит отметить, что при расчёте схем автоматики с реле, необходимо учитывать, что напряжение срабатывания реле, как правило, равно его номинальному (паспортному) значению, а напряжение удержания реле во включенном состоянии приблизительно в 1,5 раза меньше номинального. Поэтому, рассчитывая схему, изображённую выше, оптимально вести расчёт конденсатора для режима удержания, а напряжение стабилизации сделать равным номинальному (или чуть выше номинального). Это позволит работать всей схеме в режиме меньших токов, что повышает надёжность. Таким образом, для расчета емкости конденсатора С1 в схеме с коммутируемой нагрузкой, параметр Uвх мы берём равным не 12 вольт, а в полтора раза меньше – 8 вольт, а для расчёта ограничительного (стабилизирующего) транзисторного каскада – номинальное 12 вольт.

С1 = 1 / (2 * 3,14 * 50 * ((220 * 80) / 8 – 80)) = 1,5 мкФ
В качестве стабилизирующего элемента при малых токах можно использовать стабилитрон. При больших токах стабилитрон не годится – слишком малая у него рассеиваемая мощность. Поэтому в таком случае оптимально использовать транзисторную схему стабилизации напряжения. Расчёт стабилизирующего транзисторного каскада основан на использовании порога открытия биполярного транзистора, при достижении напряжения база-эмиттер 0,65 вольта (на кристалле кремния). Но учтите, что для разных транзисторов это напряжение колеблется в пределах 0,1 вольта, не только по типам, но и по экземплярам транзисторов. Поэтому напряжение стабилизации на практике может немного отличаться от рассчитанного значения.
Расчёт делителя смещения каскада стабилизации проводится всё по тем же формулам делителя напряжения, при известных Uвх.дел. = 12 вольт , Uвых.дел. = 0,65 вольт и токе транзисторного делителя, который должен быть приблизительно в двадцать раз меньше тока протекающего через ёмкость С1 . Этот ток легко найти:

Iдел. = Uвх.дел. / (20*Rн) = 12 / (20 * 80) = 0,0075 ампер ,
где – сопротивление нагрузки, в нашем случае это – сопротивление обмотки реле Р1 , равное 80 Ом .

Номиналы резисторов R1 и R2 определяются по формулам, ранее опубликованным в статье «Делитель напряжения «:

,

где Rобщ – общее сопротивление резисторов делителя смещения транзистора VT1 , которое находится по закону Ома:

Итак: Rобщ = 12 / 0,0075 = 1600 Ом ;

R3 = 0,65 * 1600 / 12 = 86,6 Ом 82 Ом ;

R2 = 1600 – 86,6 = 1513,4 Ом , по номинальному ряду, ближайший номинал – 1,5 кОм .

Зная падение напряжения на резисторах и ток делителя, не забудьте рассчитать их габаритную мощность. С запасом, габаритную мощность R2 выбираем в 0,25 Вт, а R3 – в 0,125 Вт. Вообще, вместо резистора R2 лучше поставить стабилитрон, в данном случае это может быть Д814Г, КС211(с любым индексом), Д815Д, или КС212(с любым индексом). Я научил вас рассчитывать резистор намеренно.

Транзистор выбирается также с запасом падающей на его переходе мощности. Как выбирать транзистор в подобных стабилизирующих каскадах, хорошо описано в статье «Компенсационный стабилизатор напряжения «. Для лучшей стабилизации, возможно использование схемы «составного транзистора».

Думаю, что статья своей цели достигла, «разжёвано» всё до каждой мелочи.

Чтобы подключить к бортовой электросистеме автомобиля бытовые устройства требуется инвертор, который сможет повысить напряжение с 12 В до 220 В. На полках магазинов они имеются в достаточном количестве, но не радует их цена. Для тех, кто немного знаком с электротехникой есть возможность собрать преобразователь напряжения 12 220 вольт своими руками. Две простые схемы мы разберем.

Преобразователи и их типы

Есть три типа преобразователей 12-220 В. Первый — из 12 В получают 220 В. Такие инверторы популярный у автомобилистов: через них можно подключать стандартные устройства — телевизоры, пылесосы и т.д. Обратное преобразование — из 220 В в 12 — требуется нечасто, обычно в помещениях с тяжелыми условиями эксплуатации (повышенная влажность) для обеспечения электробезопасности. Например, в парилках, бассейнах или ванных. Чтобы не рисковать, стандартное напряжение в 220 В понижают до 12, используя соответствующее оборудование.

Третий вариант — это, скорее, стабилизатор на базе двух преобразователей. Сначала стандартные 220 В преобразуются в 12 В, затем обратно в 220 В. Такое двойное преобразование позволяет иметь на выходе идеальную синусоиду. Такие устройства необходимы для нормальной работы большинства бытовой техники с электронным управлением. Во всяком случае, при установке настоятельно советуют запитать его именно через такой преобразователь — его электроника очень чувствительная к качеству питания, а замена платы управления стоит примерно как половина котла.

Импульсный преобразователь 12-220В на 300 Вт

Эта схема проста, детали доступны, большинство из них можно извлечь из блока питания для компьютера или купить в любом радиотехническом магазине. Достоинство схемы — простота реализации, недостаток — неидеальная синусоида на выходе и частота выше стандартных 50 Гц. То есть, к данному преобразователю нельзя подключать устройства, требовательные к электропитанию. К выходу напрямую можно подключать не особ чувствительные приборы — лампы накаливания, утюг, паяльник, зарядку от телефона и т.п.

Представленная схема в нормальном режиме выдает 1,5 А или тянет нагрузку 300 Вт, по максимуму — 2,5 А, но в таком режиме будут ощутимо греться транзисторы.

Построена схема на популярном ШИМ-контроллере TLT494. Полевые транзисторы Q1 Q2 надо размещать на радиаторах, желательно — раздельных. При установке на одном радиаторе, под транзисторы уложить изолирующую прокладку. Вместо указанных на схеме IRFZ244 можно использовать близкие по характеристикам IRFZ46 или RFZ48.

Частота в данном преобразователе 12 В в 220 В задается резистором R1 и конденсатором C2. Номиналы могут немного отличаться от указанных на схеме. Если у вас есть старый нерабочий беспербойник для компьютера, а в нем — рабочий выходной трансформатор, в схему можно поставить его. Если трансформатор нерабочий, из него извлечь ферритовое кольцо и намотать обмотки медным проводом диаметром 0,6 мм. Сначала мотается первичная обмотка — 10 витков с выводом от середины, затем, поверх — 80 витков вторичной.

Как уже говорили, такой преобразователь напряжения 12-220 В может работать только с нагрузкой, нечувствительной к качеству питания. Чтобы была возможность подключать более требовательные устройства, на выходе устанавливают выпрямитель, на выходе которого напряжение близко к нормальному (схема ниже).

В схеме указаны высокочастотные диоды типа HER307, но их можно заменить на серии FR207 или FR107. Емкости желательно подобрать указанной величины.

Инвертор на микросхеме

Этот преобразователь напряжения 12 220 В собирается на основе специализированной микросхемы КР1211ЕУ1. Это генератор импульсов, которые снимаются с выходов 6 и 4. Импульсы противофазные, между ними небольшой временной промежуток — для исключения одновременного открытия обоих ключей. Питается микросхема напряжением 9,5 В, который задается параметрическим стабилизатором на стабилитроне Д814В.

Также в схеме присутствуют два полевых транзистора повышенной мощности — IRL2505 (VT1 и VT2). Они имеют очень низкое сопротивление открытого выходного канала — около 0,008 Ом, что сравнимо с сопротивлением механического ключа. Допустимый постоянный ток — до 104 А, импульсный — до 360 А. Подобные характеристики реально позволяют получить 220 В при нагрузке до 400 Вт. Устанавливать транзисторы необходимо на радиаторы (при мощности до 200 Вт можно и без них).

Частота импульсов зависит от параметров резистора R1 и конденсатора C1, на выходе установлен конденсатор C6 для подавления высокочастотных выбросов.

Трансформатор лучше брать готовый. В схеме он включается наоборот — низковольтная вторичная обмотка служит как первичная, а напряжение снимается с высоковольтной вторичной.

Возможные замены в элементной базе:

  • Указанный в схеме стабилитрон Д814В можно заменить любым, выдающим 8-10 V. Например, КС 182, КС 191, КС 210.
  • Если нет конденсаторов C4 и C5 типа К50-35 на 1000 мкФ, можно взять четыре 5000 мкФ или 4700 мкФ и включить их параллельно,
  • Вместо импортного конденсатора C3 220m можно поставить отечественный любого типа на 100-500 мкФ и напряжение не ниже 10 В.
  • Трансформатор — любой с мощностью от 10 W до 1000 W, но его мощность должна быть минимум в два раза выше планируемой нагрузки.

При монтаже цепей подключения трансформатора, транзисторов и подключения к источнику 12 В надо использовать провода большого сечения — ток тут может достигать высоких значений (при мощности в 400 Вт до 40 А).

Инвертор с чистым синусом а выходе

Схемы денных преобразователей сложны даже для опытных радиолюбителей, так что сделать их своими руками совсем непросто. Пример самой простой схемы ниже.

В данном случае проще собрать подобный преобразователь из готовых плат. Как — смотрите в видео.

В следующем ролике рассказано как собирать преобразователь на 220 вольт с чистым синусом. Только входное напряжение не 12 В, а 24 В.

А в этом видео как раз рассказано, как можно менять входное напряжение, но получать на выходе требуемые 220 В.

Самостоятельно сделать трансформатор с 220 на 12 Вольт сможет даже начинающий радиолюбитель. Это устройство относится к машинам переменного тока, принцип работы отдаленно напоминает асинхронный мотор. Конечно, можно купить готовый трансформатор, но зачем тратить деньги, особенно в тех случаях, когда под рукой имеется достаточное количество стали для сердечника и провода для катушек? Остается только изучить немного теории и можно приступать к изготовлению устройства.

Как подобрать материалы

При изготовлении понижающего трансформатора с 220 на 12 Вольт важно использовать качественные материалы - это обеспечит высокую надежность устройства, которое впоследствии соберете на нем. Нужно отметить тот факт, что трансформатор позволяет сделать развязку с сетью, поэтому его допускается устанавливать для питания ламп накаливания и прочих приборов, которые находятся в помещениях с высокой влажностью (душевые, подвалы, и т. д.). При самостоятельном изготовлении каркаса катушки нужно использовать прочный картон или текстолит.

Рекомендуется использовать провода отечественного производства, они намного прочнее китайских аналогов, у них лучше изоляция. Можно использовать провод со старых трансформаторов, главное, чтобы не было повреждений изоляции. Чтобы слои изолировать друг от друга, можно использовать как простую бумагу (желательно тонкую), так и ФУМ-ленту, которая используется в сантехнике. А вот для изоляции обмоток рекомендуется применять ткань, пропитанную лаком. Поверх обмоток обязательно нужно нанести изоляцию - лаковую ткань или кабельную бумагу.

Как проводить расчет?

Теперь, когда все материалы готовы, можно произвести расчет трансформатора с 220 на 12 Вольт (для лампы или любого другого бытового прибора). Для того чтобы вычислить число витков первичной обмотки, нужно использовать формулу:

N = (40..60) / S.

S - это площадь сечения магнитопровода, единица измерения - кв. см. В числителе константа - она зависит от того, какое у металла сердечника качество. Ее значение может лежать в диапазоне от 40 до 60.

Расчет на примере

Допустим, у нас такие параметры:

  1. Окно в высоту 53 мм, в ширину - 19 мм.
  2. Каркас изготавливается из текстолита.
  3. Верхние и нижние щеки: 50 мм, каркас 17,5 мм, следовательно, окно имеет размер 50 х 17,5 мм.

Далее, нужно произвести расчет диаметра проводов. Допустим, нужно, чтобы мощность была равной 170 Вт. При этом на сетевой обмотке ток будет равен 0,78 А (мощность делим на напряжение). В конструкции плотность тока оказывается равной 2 А/кв. мм. Имея эти данные, можно вычислить, что нужно применять провод диаметром 0,72 мм. Допускается использовать и 0,5 мм, 0,35 мм, но ток при этом будет меньше.

Отсюда можно сделать вывод, что для питания радиоаппаратуры на лампах, например, нужно намотать 950-1000 витков для высоковольтной обмотки. Для накала - 11-15 витков (провод только нужно использовать большего диаметра, зависит от числа ламп). Но все эти параметры можно найти и опытным путем, о котором будет рассказано дальше.

Расчет первичной обмотки

При изготовлении своими руками трансформатора с 220 на 12 Вольт нужно правильно произвести расчет первичной (сетевой) обмотки. И только после этого можно начинать делать остальные. Если неверно сделаете расчет первичной, то устройство начнет греться, сильно гудеть, пользоваться им будет неудобно, да и опасно. Допустим, используется для намотки провод сечением 0,35 мм. На одном слое уместится 115 витков (50/(0,9 х 0,39)). Число слоев посчитать тоже несложно. Для этого достаточно общее количество витков разделить на то, сколько умещается в одном слое: 1000/115=8,69.

Теперь можно произвести расчет высоты каркаса вместе с обмотками. Первичная имеет восемь полных слоев, плюс к ней еще изоляция (толщина 0,1 мм): 8 х (0,1 + 0,74) = 6,7 мм. Чтобы не появились высокочастотные помехи, сетевая обмотка экранируется от остальных. Для экрана можно использовать простой провод - наматываете один слой, изолируете его и концы соединяете с корпусом. Допускается использовать и фольгу (конечно, она должна быть прочной). В общем, первичная обмотка нашего трансформатора займет 7,22 мм.

Простой способ расчета вторичных обмоток

А теперь о том, как произвести расчет вторичных обмоток, если первичная уже имеется или готова. Использовать можно такой трансформатор 220 на 12 Вольт для светодиодных лент, только обязательно установите стабилизатор напряжения. В противном случае яркость будет непостоянной. Итак, что нужно для расчета? Несколько метров провода и только, наматываете определенное количество витков поверх первичной обмотки. Допустим, вы намотали 10 (а больше и не нужно, этого предостаточно).

Дальше необходимо собрать трансформатор и подключить первичную обмотку к сети через автоматический выключатель (для подстраховки). Ко вторичной обмотке подключаете вольтметр и щелкаете автомат. Смотрите, какое значение напряжения показывает прибор (например, он показал 5 В). Следовательно, каждый виток выдает ровно 0,5 В. А теперь просто ориентируетесь на то, какое напряжение вам нужно получить (в нашем случае это 12 В). Два витка - это 1 Вольт напряжения. А 12 В - это 24 витка. Но рекомендуется взять небольшой запас - около 25 % (а это 6 витков). Потери напряжения никто не отменял, поэтому вторичная обмотка на 12 В должна содержать 30 витков провода.

Как изготовить каркас катушек

Крайне важно при изготовлении каркаса добиться полного отсутствия острых углов, в противном случае провод может повредиться, появится межвитковое замыкание. На щечках нужно отвести места, к которым будут крепиться выводные контакты от обмоток. После окончательной сборки каркаса необходимо округлить при помощи надфиля все острые грани.

Пластины из трансформаторной стали должны входить в отверстия максимально плотно, не допускается наличие свободного хода. Для намотки тонких проводов можно использовать специальное устройство с ручным или электрическим приводом. А толстые провода нужно наматывать исключительно руками без дополнительных устройств.

Блок выпрямителя

Сам по себе выдавать постоянный ток трансформатор 220 на 12 Вольт не будет, нужно использовать дополнительные устройства. Это выпрямитель, фильтр и стабилизатор. Первый выполняется на одном или нескольких диодах. Самая популярная схема - мостовая. У нее масса преимуществ, в числе основных - минимальные потери напряжения и высокое качество тока на выходе. Но допускается использовать и иные схемы выпрямителей.

В качестве фильтров используется обычный электролитический конденсатор, который позволяет избавиться от остатков переменной составляющей выходного тока. Стабилитрон, установленный на выходе, позволяет удерживать напряжение на одном уровне. В этом случае даже при наличии пульсаций в сети 220 В и во вторичной обмотке на выходе выпрямителя напряжение будет иметь всегда одно и то же значение. Это хорошо сказывается на работе устройств, которые подключаются к нему.