Разложение матрицы по элементам. Определитель матрицы. Формулы для определителя

Определение1. 7 . Минором элемента определителя называется определитель, полученный из данного путем вычеркивания строки и столбца, в которых стоит выбранный элемент.

Обозначение: выбранный элемент определителя, его минор.

Пример. Для

Определение1. 8. Алгебраическим дополнением элемента определителя называется его минор, если сумма индексов данного элемента i+j есть число четное, или число, противоположное минору, если i+j нечетно, т.е.

Рассмотрим еще один способ вычисления определителей третьего порядка – так называемое разложение по строке или столбцу. Для этого докажем следующую теорему:

Теорема 1.1 . Определитель равен сумме произведений элементов любой его строки или столбца на их алгебраические дополнения, т.е.

где i=1,2,3.

Доказательство.

Докажем теорему для первой строки определителя, так как для любой другой строки или столбца можно провести аналогичные рассуждения и получить тот же результат.

Найдем алгебраические дополнения к элементам первой строки:

Таким образом, для вычисления определителя достаточно найти алгебраические дополнения к элементам какой-либо строки или столбца и вычислить сумму их произведений на соответствующие элементы определителя.

Пример. Вычислим определитель с помощью разложения по первому столбцу. Заметим, что при этом искать не требуется, так как следовательно, и Найдем и Следовательно,

Определители более высоких порядков .

Определение1. 9 . Определитель n-го порядка

есть сумма n! членов каждый из которых соответствует одному из n! упорядоченных множеств полученных r попарными перестановками элементов из множества 1,2,…,n.

Замечание 1. Свойства определителей 3-го порядка справедливы и для определителей n-го порядка.

Замечание 2. На практике определители высоких порядков вычисляют с помощью разложения по строке или столбцу. Это позволяет понизить порядок вычисляемых определителей и в конечном счете свести задачу к нахождению определителей 3-го порядка.

Пример. Вычислим определитель 4-го порядка с помощью разложения по 2-му столбцу. Для этого найдем и :

Следовательно,

Теоре́ма Лапла́са - одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа (1749 - 1827), которому приписывают формулирование этой теоремы в 1772 году , хотя частный случай этой теоремы о разложении определителя по строке (столбцу) был известен ещё Лейбницу.

олнение минора определяется следующим образом:

Справедливо следующее утверждение.

Число миноров, по которым берётся сумма в теореме Лапласа, равно числу способов выбрать столбцов из , то есть биномиальному коэффициенту .

Так как строки и столбцы матрицы равносильны относительно свойств определителя, теорему Лапласа можно сформулировать и для столбцов матрицы.

Разложение определителя по строке (столбцу) (Следствие 1)

Широко известен частный случай теоремы Лапласа - разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.

Пусть - квадратная матрица размера . Пусть также задан некоторый номер строки либо номер столбца матрицы . Тогда определитель может быть вычислен по следующим формулам.

Дальнейшие свойства связаны с понятиями минора и алгебраического дополнения

Минором элемента называется определитель, составленный из элементов, оставшихся после вычеркивания стоки и столбца, на пересечении которых находится этот элемент. Минор элемента определителя порядка имеет порядок . Будем его обозначать через .

Пример 1. Пусть , тогда .

Этот минор получается из A путём вычёркивания второй строки и третьего столбца.

Алгебраическим дополнением элемента называется соответствующий минор, умноженный на , т.е , где –номер строки и -столбца, на пересечении которых находится данный элемент.

VІІІ. (Разложение определителя по элементам некоторой строки). Определитель равен сумме произведений элементов некоторой строки на соответствующие им алгебраические дополнения.

Пример 2. Пусть , тогда

Пример 3. Найдём определитель матрицы , разложив его по элементам первой строки.

Формально эта теорема и другие свойства определителей применимы пока только для определителей матриц не выше третьего порядка, поскольку другие определители мы не рассматривали. Следующее определение позволит распространить эти свойства на определители любого порядка.

Определителемматрицы порядка называется число, вычисленное с помощью последовательного применения теоремы о разложении и других свойств определителей.

Можно проверить, что результат вычислений не зависит от того, в какой последовательности и для каких строк и столбцов применяются вышеуказанные свойства. Определитель с помощью этого определения находится однозначно.

Хотя данное определение и не содержит явной формулы для нахождения определителя, оно позволяет находить его путём сведения к определителям матриц меньшего порядка. Такие определения называют рекуррентными.

Пример 4. Вычислить определитель:

Хотя теорему о разложении можно применять к любой строке или столбцу данной матрицы, меньше вычислений получится при разложении по столбцу, содержащему как можно больше нулей.

Поскольку у матрицы нет нулевых элементов, то получим их с помощью свойства VII . Умножим первую строку последовательно на числа и прибавим её ко строкам и получим:

Разложим получившийся определитель по первому столбцу и получим:

так как определитель содержит два пропорциональных столбца.

Некоторые виды матриц и их определители

Квадратная матрица, у которой ниже или выше главной диагонали стоят нулевые элементы ()называется треугольной.

Их схематичное строение соответственно имеет вид: или

.

В ходе решения задач по высшей математике очень часто возникает необходимость вычислить определитель матрицы . Определитель матрицы фигурирует в линейной алгебре, аналитической геометрии, математическом анализе и других разделах высшей математики. Таким образом, без навыка решения определителей просто не обойтись. Также для самопроверки Вы можете бесплатно скачать калькулятор определителей , он сам по себе не научит решать определители, но очень удобен, поскольку всегда выгодно заранее знать правильный ответ!

Я не буду давать строгое математическое определение определителя, и, вообще, буду стараться минимизировать математическую терминологию, большинству читателей легче от этого не станет. Задача данной статьи – научить Вас решать определители второго, третьего и четвертого порядка. Весь материал изложен в простой и доступной форме, и даже полный (пустой) чайник в высшей математике после внимательного изучения материала сможет правильно решать определители.

На практике чаще всего можно встретить определитель второго порядка, например: , и определитель третьего порядка, например: .

Определитель четвертого порядка тоже не антиквариат, и к нему мы подойдём в конце урока.

Надеюсь, всем понятно следующее: Числа внутри определителя живут сами по себе, и ни о каком вычитании речи не идет! Менять местами числа нельзя!

(Как частность, можно осуществлять парные перестановки строк или столбцов определителя со сменой его знака, но часто в этом нет никакой необходимости – см. следующий урок Свойства определителя и понижение его порядка)

Таким образом, если дан какой-либо определитель, то ничего внутри него не трогаем!

Обозначения : Если дана матрица , то ее определитель обозначают . Также очень часто определитель обозначают латинской буквой или греческой .

1) Что значит решить (найти, раскрыть) определитель? Вычислить определитель – это значит НАЙТИ ЧИСЛО. Знаки вопроса в вышерассмотренных примерах – это совершенно обыкновенные числа.

2) Теперь осталось разобраться в том, КАК найти это число? Для этого нужно применить определенные правила, формулы и алгоритмы, о чём сейчас и пойдет речь.

Начнем с определителя «два» на «два» :

ЭТО НУЖНО ЗАПОМНИТЬ, по крайне мере на время изучения высшей математики в ВУЗе.

Сразу рассмотрим пример:

Готово. Самое главное, НЕ ЗАПУТАТЬСЯ В ЗНАКАХ.

Определитель матрицы «три на три» можно раскрыть 8 способами, 2 из них простые и 6 - нормальные.

Начнем с двух простых способов

Аналогично определителю «два на два», определитель «три на три» можно раскрыть с помощью формулы:

Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок».
Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:


Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс».
Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:

Пример:

Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

Теперь рассмотрим шесть нормальных способов для вычисления определителя

Почему нормальных? Потому что в подавляющем большинстве случаев определители требуется раскрывать именно так.

Как Вы заметили, у определителя «три на три» три столбца и три строки.
Решить определитель можно, раскрыв его по любой строке или по любому столбцу .
Таким образом, получается 6 способов, при этом во всех случаях используется однотипный алгоритм.

Определитель матрицы равен сумме произведений элементов строки (столбца) на соответствующие алгебраические дополнения. Страшно? Все намного проще, будем использовать ненаучный, но понятный подход, доступный даже для человека, далекого от математики.

В следующем примере будем раскрывать определитель по первой строке .
Для этого нам понадобится матрица знаков: . Легко заметить, что знаки расположены в шахматном порядке.

Внимание! Матрица знаков – это мое собственное изобретение. Данное понятие не научное, его не нужно использовать в чистовом оформлении заданий, оно лишь помогает Вам понять алгоритм вычисления определителя.

Сначала я приведу полное решение. Снова берем наш подопытный определитель и проводим вычисления:

И главный вопрос: КАК из определителя «три на три» получить вот это вот:
?

Итак, определитель «три на три» сводится к решению трёх маленьких определителей, или как их еще называют, МИНОРОВ . Термин рекомендую запомнить, тем более, он запоминающийся: минор – маленький.

Коль скоро выбран способ разложения определителя по первой строке , очевидно, что всё вращается вокруг неё:

Элементы обычно рассматривают слева направо (или сверху вниз, если был бы выбран столбец)

Поехали, сначала разбираемся с первым элементом строки, то есть с единицей:

1) Из матрицы знаков выписываем соответствующий знак:

2) Затем записываем сам элемент:

3) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит первый элемент:

Оставшиеся четыре числа и образуют определитель «два на два», который называется МИНОРОМ данного элемента (единицы).

Переходим ко второму элементу строки.

4) Из матрицы знаков выписываем соответствующий знак:

5) Затем записываем второй элемент:

6) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит второй элемент:

Ну и третий элемент первой строки. Никакой оригинальности:

7) Из матрицы знаков выписываем соответствующий знак:

8) Записываем третий элемент:

9) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит третий элемент:

Оставшиеся четыре числа записываем в маленький определитель.

Остальные действия не представляют трудностей, поскольку определители «два на два» мы считать уже умеем. НЕ ПУТАЕМСЯ В ЗНАКАХ!

Аналогично определитель можно разложить по любой строке или по любому столбцу. Естественно, во всех шести случаях ответ получается одинаковым.

Определитель «четыре на четыре» можно вычислить, используя этот же алгоритм.
При этом матрица знаков у нас увеличится:

В следующем примере я раскрыл определитель по четвертому столбцу :

А как это получилось, попробуйте разобраться самостоятельно. Дополнительная информация будет позже. Если кто захочет прорешать определитель до конца, правильный ответ: 18. Для тренировки лучше раскрыть определитель по какому-нибудь другому столбцу или другой строке.

Потренироваться, раскрыть, провести расчёты – это очень хорошо и полезно. Но сколько времени вы потратите на большой определитель? Нельзя ли как-нибудь быстрее и надёжнее? Предлагаю ознакомиться с эффективными методами вычисления определителей на втором уроке – Свойства определителя. Понижение порядка определителя .

БУДЬТЕ ВНИМАТЕЛЬНЫ!

Вычисление определителей n -го порядка:

Понятие определителя n -го порядка

Пользуясь этой статьёй об определителях, вы обязательно научитесь решать задачи вроде следующей:

Решить уравнение:

и многих других, которые так любят придумывать преподаватели.

Определитель матрицы или просто определитель играет важную роль в решении систем линейных уравнений. В общем-то определители и были придуманы для этой цели. Поскольку часто говорят также "определитель матрицы", упомянем здесь и матрицы. Матрица - это прямоугольная таблица, составленная из чисел, которые нельзя менять местами. Квадратная матрица - таблица, у которой число строк и число столбцов одинаково. Определитель может быть только у квадратной матрицы .

Понять логику записи определителей легко по следующей схеме. Возьмём знакомую вам со школьной скамьи систему из двух уравнений с двумя неизвестными:

В определителе последовательно записываются коэффициенты при неизвестных: в первой строке - из первого уравнения, во второй строке - из второго уравнения:

Например, если дана система уравнений

то из коэффициентов при неизвестных формируется следующий определитель:

Итак, пусть дана квадратная таблица, состоящая из чисел, расположенных в n строках (горизонтальных рядах) и в n столбцах (вертикальных рядах). С помощью этих чисел по некоторым правилам, которые мы изучим ниже, находят число, которое и называют определителем n -го порядка и обозначают следующим образом:

(1)

Числа называют элементами определителя (1) (первый индекс означает номер строки, второй – номер столбца, на пересечении которых стоит элемент; i = 1, 2, ..., n; j = 1, 2, ..., n). Порядок определителя – это число его строк и столбцов.

Воображаемая прямая, соединяющая элементы определителя, у которых оба индекса одинаковы, т.е. элементы

называется главной диагональю , другая диагональ – побочной .

Вычисление определителей второго и третьего порядков

Покажем, как вычисляются определители первых трёх порядков.

Определитель первого порядка – это сам элемент т.е.

Определитель второго порядка есть число, получаемое следующим образом:

, (2)

Произведение элементов, стоящих соответственно на главной и на побочной диагоналях.

Равенство (2) показывает, что со своим знаком берётся произведение элементов главной диагонали, а с противоположным – произведение элементов побочной диагонали .

Пример 1. Вычислить определители второго порядка:

Решение. По формуле (2) находим:

Определитель третьего порядка – это число, получаемое так:

(3)

Запомнить эту формулу трудно. Однако существует простое правило, называемое правилом треугольников , которое позволяет легко воспроизвести выражение (3). Обозначая элементы определителя точками, соединим отрезками прямой те из них, которые дают произведения элементов определителя (рис. 1).


Формула (3) показывает, что со своими знаками берутся произведения элементов главной диагонали, а также элементов, расположенных в вершинах двух треугольников, основания которых ей параллельны; с противоположными – произведения элементов побочной диагонали, а также элементов, расположенных в вершинах двух треугольников, которые ей параллельны .

На рис.1 главная диагональ и соответствующие ей основания треугольников и побочная диагональ и соответствующие ей основания треугольников выделены красным цветом.

При вычислении определителей очень важно, как и в средней школе, помнить, что число со знаком минус, умноженное на число со знаком минус, в результате даёт число со знаком плюс, а число со знаком плюс, умноженное на число со знаком минус, в результате даёт число со знаком минус.

Пример 2. Вычислить определитель третьего порядка:

Решение. Пользуясь правилом треугольников, получим



Вычисление определителей n -го порядка

Разложение определителя по строке или столбцу

Для вычисления определителя n -го порядка необходимо знать и использовать следующую теорему.

Теорема Лапласа. Определитель равен сумме произведений элементов какой-либо строки на их алгебраические дополнения, т.е.

Определение . Если в определителе n -го порядка выбрать произвольно p строк и p столбцов (p < n ), то элементы, находящиеся на пересечении этих строк и столбцов, образуют матрицу порядка .

Определитель этой матрицы называется минором исходного определителя. Например, рассмотрим определитель :

Из строк и столбцов с чётными номерами построим матрицу:

Определитель

называется минором определителя . Получили минор второго порядка. Ясно, что из можно построить различные миноры первого, второго и третьего порядка.

Если взять элемент и вычеркнуть в определителе строку и столбец, на пересечении которых он стоит, то получим минор, называемый минором элемента , который обозначим через :

.

Если минор умножить на , где 3 + 2 – сумма номеров строки и столбца, на пересечении которых стоит элемент то полученное произведение называется алгебраическим дополнением элемента и обозначается ,

Вообще, минор элемента будем обозначать , а алгебраическое дополнение ,

(4)

Для примера вычислим алгебраические дополнения элементов и определителя третьего порядка :

По формуле (4) получим

При разложении определителя часто используется следующее свойство определителя n -го порядка:

если к элементам какой-либо строки или столбца прибавить произведение соответствующих элементов другой строки или столбца на постоянный множитель, то значение определителя не изменится.

Пример 4.

Предварительно вычтем из первой и третьей строк элементы четвёртой строки, тогда будем иметь

В четвёртом столбце полученного определителя три элемента – нули. Поэтому выгоднее разложить этот определитель по элементам четвёртого столбца, так как три первых произведения будут нулями. Поэтому

Проверить решение можно с помощью калькулятора определителей онлайн .

А в следующем примере показано, как вычисление определителя любого (в данном случае - четвёртого) порядка можно свести к вычислению определителя второго порядка.

Пример 5. Вычислить определитель:

Вычтем из третьей строки элементы первой строки, а к элементам четвёртой строки прибавим элементы первой строки, тогда будем иметь

В первом столбце все элементы, кроме первого, - нули. То есть, определитель можно уже разложить по первому столбцу. Но нам очень не хочется вычислять определитель третьего порядка. Поэтому произведём ещё преобразования: к элементам третьей строки прибавим элементы второй строки, умноженные на 2, а из элементов четвёртой строки вычтем элементы второй строки. В результате определитель, являющийся алгебраическим дополнением, сам может быть разложен по первому столбцу и нам останется только вычислить определитель второго порядка и не запутаться в знаках:

Приведение определителя к треугольному виду

Определитель, где все элементы, лежащие по одну сторону одной из диагоналей, равны нулю, называется треугольным. Случай побочной диагонали путём изменения порядка строк или столбцов на обратный сводится к случаю главной диагонали. Такой определитель равен произведению элементов главной диагонали.

Для приведения к треугольному виду используется то же самое свойство определителя n -го порядка, которое мы применяли в предыдущем параграфе: если к элементам какой-либо строки или столбца прибавить произведение соответствующих элементов другой строки или столбца на постоянный множитель, то значение определителя не изменится.

Проверить решение можно с помощью калькулятора определителей онлайн .

Свойства определителя n -го порядка

В двух предыдущих параграфах мы уже использовали одно из свойств определителя n -го порядка. В некоторых случаях для упрощения вычисления определителя можно пользоваться другими важнейшими свойствами определителя. Например, можно привести определитель к сумме двух определителей, из которых один или оба могут быть удобно разложены по какой-либо строке или столбцу. Случаев такого упрощения предостаточно и решать вопрос об использовании того или иного свойства определителя следует индивидуально.

Часто в ВУЗе попадаются задачи по высшей математики, в которых необходимо вычислить определитель матрицы . К слову, определитель может быть только в квадратных матрицах. Ниже рассмотрим основные определения, какими свойствами обладает определитель и как его правильно вычислить.. Также на примерах покажем подробное решение.

Что такое определитель матрицы: вычисление определителя при помощи определения

Определитель матрицы

Второго порядка – это число .

Определитель матрицы обозначается – (сокращенно от латинского названия детерминант), или .

Если:, тогда получается

Напомним ещё несколько вспомогательных определений:

Определение

Упорядоченный набор чисел, который состоит из элементов называется перестановкой порядка .

Для множества, которое содержит элементов есть факториал (n), который всегда обозначается восклицательным знаком: . Перестановки отличаются друг от друга всего лишь порядком следования. Чтобы вам было понятнее, приведём пример:

Рассмотрим множество из трёх элементов {3, 6, 7}. Всего перестановок 6, так как .:

Определение

Инверсия в перестановке порядка – это упорядоченный набор чисел (его ещё называют биекцией), где из них два числа образуют некий беспорядок. Это когда большее из чисел в данной перестановке расположено левее меньшего числа.

Выше мы рассматривали пример с инверсией перестановки, где были числа . Так вот, возьмём вторую строку, где судя по данным числам получается, что , а , так как второй элемент больше третьего элемента . Возьмём для сравнения шестую строку, где расположены числа: . Здесь есть три пары: , а , так как title="Rendered by QuickLaTeX.com" height="13" width="42" style="vertical-align: 0px;">; , так как title="Rendered by QuickLaTeX.com" height="13" width="42" style="vertical-align: 0px;">; , – title="Rendered by QuickLaTeX.com" height="12" width="43" style="vertical-align: 0px;">.

Саму инверсию мы изучать не будем, а вот перестановки нам очень пригодятся в дальнейшем рассмотрении темы.

Определение

Определитель матрицы x – число:

– перестановка чисел от 1 до бесконечного числа , а – число инверсий в перестановке. Таким образом, в определитель входит слагаемых, которые называются “членами определителя”.

Можно вычислять определитель матрицы второго порядка, третьего и даже четвёртого. Также стоит упомянуть:

Определение

определитель матрицы – это число, которое равняется

Чтобы понять данную формулу, опишем её более подробно. Определитель квадратной матрицы x – это сумма, которая содержит слагаемых, а каждое слагаемое является собой произведением определённого количества элементов матрицы. При этом, в каждом произведении есть элемент из каждой строки и каждого столбца матрицы.

Перед определённым слагаемым может появится в том случае, если элементы матрицы в произведении идут по порядку (по номеру строку), а количество инверсий в перестановке множество номеров столбцов нечётно.

Выше упоминалось о том, что определитель матрицы обозначается или , то есть, определитель часто называют детерминантом.

Итак, вернёмся к формуле:

Из формулы видно, что определитель матрицы первого порядка – это элемент этой же матрицы .

Вычисление определителя матрицы второго порядка

Чаще всего на практике определитель матрицы решается методами второго, третьего и реже, четвёртого порядка. Рассмотрим, как вычисляется определитель матрицы второго порядка:

В матрице второго порядка , отсюда следует, что факториал . Прежде чем применить формулу

Необходимо определить, какие данные у нас получаются:

2. перестановки множеств: и ;

3. количество инверсий в перестановке : и , так как title="Rendered by QuickLaTeX.com" height="13" width="42" style="vertical-align: -1px;">;

4. соответствующие произведения : и .

Получается:

Исходя из вышесказанного мы получаем формулу для вычисления определителя квадратной матрицы второго порядка, то есть x :

Рассмотрим на конкретном примере, как вычислять определитель квадратной матрицы второго порядка:

Пример

Задача

Вычислить определитель матрицы x :

Решение

Итак, у нас получается , , , .

Для решения необходимо воспользоваться ранее рассмотренной формулой:

Подставляем числа с примера и находим:

Ответ

Определитель матрицы второго порядка = .

Вычисление определителя матрицы третьего порядка: пример и решение по формуле

Определение

Определитель матрицы третьего порядка – это число, полученное из девяти заданных чисел, расположенных в виде квадратной таблицы,

Определитель третьего порядка находится почти так же, как и определитель второго порядка. Разница лишь в формуле. Поэтому, если хорошо ориентироваться в формуле, тогда и проблем с решением не будет.

Рассмотрим квадратную матрицу третьего порядка * :

Исходя из данной матрицы, понимаем, что , соответственно, факториал = , а это значит, что всего перестановок получается

Чтобы применить правильно формулу , необходимо найти данные:

Итак, всего перестановок множества :

Количество инверсий в перестановке , а соответствующие произведения = ;

Количество инверсий в перестановке title="Rendered by QuickLaTeX.com" height="18" width="65" style="vertical-align: -4px;">, соответствующие произведения = ;

Инверсий в перестановке title="Rendered by QuickLaTeX.com" height="18" width="65" style="vertical-align: -4px;"> ;

. ; инверсий в перестановке title="Rendered by QuickLaTeX.com" height="18" width="118" style="vertical-align: -4px;">, соответствующие произведение =

. ; инверсий в перестановке title="Rendered by QuickLaTeX.com" height="18" width="118" style="vertical-align: -4px;">, соответствующие произведение =

. ; инверсий в перестановке title="Rendered by QuickLaTeX.com" height="18" width="171" style="vertical-align: -4px;">, соответствующие произведение = .

Теперь у нас получается:

Таким образом у нас получена формула для вычисления определителя матрицы порядка x :

Нахождение матрицы третьего порядка по правилу треугольника (правило Саррюса)

Как говорилось выше, элементы определителя 3-го порядка расположены в трёх строках и трёх столбцах. Если ввести обозначение общего элемента , тогда первый элемент обозначает номер строки, а второй элемент из индексов – номер столбца. Есть главная (элементы ) и побочная (элементы ) диагонали определителя. Слагаемые в правой части называются членами определителя).

Видно, что каждый член определителя находится в схеме только по одному элементу в каждой строке и каждого столбца.

Вычислять определитель можно при помощи правила прямоугольника, который изображён в виде схемы. Красным цветом выделены члены определителя из элементов главной диагонали, а также члены из элементов, которые находятся в вершине треугольников, что имеют по одной стороне, параллельны главной диагонали (лева схема), беруться со знаком .

Члены с синими стрелками из элементов побочной диагонали, а также из элементов, которые находятся в вершинах треугольников, что имеют стороны, параллельные побочной диагонали (правая схема) берутся со знаком .

На следующем примере научимся, как вычислять определитель квадратной матрицы третьего порядка.

Пример

Задача

Вычислить определитель матрицы третьего порядка:

Решение

В этом примере:

Вычисляем определитель, применяя формулу или схему, которые рассматривались выше:

Ответ

Определитель матрицы третьего порядка =

Основные свойства определителей матрицы третьего порядка

На основании предыдущих определений и формул рассмотрим основные свойства определителя матрицы .

1. Размер определителя не изменится при замене соответствующих строк, столбцов (такая замена называется транспонированием).

На примере убедимся, что определитель матрицы равен определителю транспонированной матрицы:

Вспомним формулу для вычисления определителя:

Транспонируем матрицу:

Вычисляем определитель транспонированной матрицы:

Мы убедились, что определитель транспортированной матрицы равен исходной матрице, что говорит о правильном решении.

2. Знак определителя изменится на противоположный, если в нём поменять местами любые два его столбца или две строки.

Рассмотрим на примере:

Даны две матрицы третьего порядка ( x ):

Нужно показать, что определители данных матриц противоположные.

Решение

В матрице и в матрице поменялись строки (третья с первой, и с первой на третью). Согласно второму свойству определители двух матриц должны отличаться знаком. То есть, одна матрица с положительным знаком, а вторая – с отрицательным. давайте проверим данное свойство, применив формулу для вычисления определителя.

Свойство верно, так как .

3. Определитель равняется нулю, если в нём есть одинаковые соответствующие элементы в двух строках (столбцах). Пусть у определителя одинаковые элементы первого и второго столбцов:

Поменяв местами одинаковые столбцы, мы, согласно свойству 2 получим новый определитель: = . С другой стороны, новый определитель совпадает с изначальным, поскольку одинаковые ответы элементы, то есть = . Из этих равенств у нас получается: = .

4. Определитель равняется нулю, если все элементы одной строки (столбца) нули. Это утверждение выплывает из того, что у каждого члена определителя по формуле (1) есть по одному, и только по одному элементу с каждой строки (столбца), у которого одни нули.

Рассмотрим на примере:

Покажем, что определитель матрицы равен нулю:

В нашей матрицы есть два одинаковых столбца (второй и третий), поэтому, исходя из данного свойства, определитель должен равняться нулю. Проверим:

И действительно, определитель матрицы с двумя одинаковыми столбцами равняется нулю.

5. Общий множитель элементов первой строки (столбца) можно вынести за знак определителя:

6. Если элементы одной строки или одного столбца определителя пропорциональны соответствующим элементам второй строки (столбца), тогда такой определитель равняется нулю.

Действительно, за свойством 5 коэффициент пропорциональности можно вынести за знак определителя, и тогда воспользоваться свойством 3.

7. Если каждый из элементов строк (столбцов) определителя является суммой двух слагаемых, то этот определитель можно подать в виде суммы соответствующих определителей:

Для проверки достаточно записать в развёрнутом виде по (1) определитель, что в левой части равенства, тогда отдельно сгруппировать члены, в которых содержатся элементы и .Каждая из полученных групп слагаемых будет соответственно первым и вторым определителем с правой части равенства.

8. Значения определения не изменятся, если к элементу одной строки или одного столбца прибавить соответствующие элементы второй строки (столбца), умноженные на одно и то же число:

Это равенство получается исходя из свойств 6 и 7.

9. Определитель матрицы , , равняется сумме произведений элементов какой-либо строки или столбца на их алгебраические дополнения.

Здесь по подразумевается алгебраическое дополнение элемента матрицы . При помощи данного свойства можно вычислять не только матрицы третьего порядка, но и матрицы более высших порядков ( x или x ).Другими словами – это рекуррентная формула, которая нужна для того, чтобы вычислить определитель матрицы любого порядка. Запомните её, так как она часто применяется на практике.

Стоит сказать, что при помощи девятого свойства можно вычислять определители матриц не только четвёртого порядка, но и более высших порядков. Однако, при этом нужно совершать очень много вычислительных операций и быть внимательным, так как малейшая ошибка в знаках приведёт к неверному решению. Матрицы высших порядков удобнее всего решать методом Гаусса, и об этом поговорим позже.

10. Определитель произведения матриц одного порядка равен произведению их определителей.

Рассмотрим на примере:

Пример

Задача

Убедитесь, что определитель двух матриц и равен произведению их определителей. Даны две матрицы:

Решение

Сначала находим произведение определителей двух матриц и .

Теперь выполним умножение обеих матриц и таким образом, вычислим определитель:

Ответ

Мы убедились, что

Вычисление определителя матрицы при помощи метода Гаусса

Определитель матрицы обновлено: 22 ноября, 2019 автором: Научные Статьи.Ру